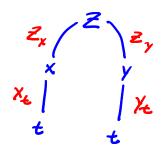
Sec 14.5 CHAIN RULE



Chain Rule Formula. If z = f(x, y) and $x \equiv x(t)$ and $y \equiv y(t)$, then

$$\frac{dz}{dt} = f_x(x(t), y(t)) \ x'(t) + f_y(x(t), y(t)) \ y'(t)$$

Short Notation:

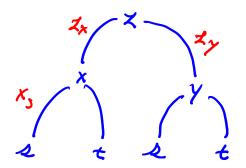
$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Ex1. If
$$z = x^2y + xy^2$$
, $x = 2 + t^4$, $y = 1 - t^2$, find $\frac{dz}{dt}\Big|_{t=1}$.
 $\frac{dx}{dt} = \frac{\partial x}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial x}{\partial y} \cdot \frac{dy}{dt}$
 $\frac{dy}{dt} = (2xy + y^2) \cdot (4t^8) + (x^2 + 2xy) \cdot (-2t)$
 $\frac{dt}{dt}$
Using $t = 1$, $(x_0y) = (3, 0)$
Now $\frac{dx}{dt}\Big|_{t=1} = (2(8) + 0^2) \cdot (4(1)^3) + (9 + 2(3)(0))(-2(0)) = -18$.

In three variables: If w = f(x, y, z) and $x \equiv x(t)$, $y \equiv y(t)$ and $z \equiv z(t)$, then

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

Ex2. If $w = xe^{y/z}$, $x = t^2$, y = 1 - t and z = 1 - 2t, find $\frac{dw}{dt}\Big|_{t=2}$. $\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dx}{dt} + \frac{\partial w}{\partial x} \frac{dx}{dt}$ $\frac{dw}{dt} = (e^{\frac{y}{2}})(xt) + (\frac{x}{2}e^{\frac{y}{2}})(-t) + (-\frac{xy}{2^{4}}e^{\frac{y}{2}}) \cdot (-2)$ when f = 2, $(\frac{x}{2}, \frac{y}{2}, \frac{y}{2}) = (\frac{y}{2}, -1, -3)$ then $\frac{dw}{dt}\Big|_{t=2} = (e^{\frac{y}{2}})(4) + (\frac{4}{3})(e^{\frac{y}{2}}) + (\frac{-d}{4})e^{\frac{y}{2}} = e^{\frac{y}{2}}(4 + \frac{4}{3} - \frac{4}{3})$ $= e^{\frac{y}{3}}(\frac{4}{3})$ **More general:** What if z = f(x, y) and $x \equiv x(s, t)$ and $y \equiv y(s, t)$? In this case, the composite function is z = f(x(s,t), y(s,t)).



Following the diagram, we have the formulas:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \qquad \text{and} \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Ex3. If $z = x^2 + xy + y^2$, x = 4s + t and $y = s^2 t$, compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ at the point (s, t) = (1, 2) $\frac{\partial z}{\partial x} = \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} \cdot \frac{\partial y}{\partial x} = (2x + y)(4) + (x + 2y) \cdot (2 - x^{2})$ when (a, t) = (1, 2), we get (x, y) = (6, 2) = (2(6)+2)(4) + (6+2(2))(2(1)(2)) = (-2,5) = (ten to do: $\frac{\partial x}{\partial e} = i$

Exercises.

(1) Suppose z = f(x, y), where x = g(s, t), y = h(s, t), g(1, 2) = 3, $g_s(1, 2) = -1$, $g_t(1, 2) = -1$ 4, h(1,2) = 6, $h_s(1,2) = -5$, $h_t(1,2) = 10$, $f_x(3,6) = 7$, and $f_y(3,6) = 8$. Find $\partial z/\partial s$ and $\partial z/\partial t$ when s = 1 and t = 2.

$$\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial x} = \left(f_x(x,y) \right) \left(g_x(x,y) \right) + \left(f_y(x,y) \right) \left(h_x(x,y) \right) \right)$$
when $(a, t) = (1, 2)$, we get $(x,y) = (3, 6)$. Hen $\frac{dy}{dx} \Big|_{de_1} = (7)(-1) + (8)(-5)$
(2) If $z = x/y$, $x = se^t$ and $y = 1 + se^{-t}$, compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$$\frac{\partial y}{\partial t} \Big|_{de_1} = (0.8)$$
to do
$$\frac{\partial y}{\partial t} \Big|_{de_1} = (0.8)$$

Implicit Differentiation

Ex1. Find
$$\frac{\partial z}{\partial x}$$
 if $x^3 + y^3 + z^3 = 1 - 6xyz$.
 $\frac{\partial}{\partial x} (x^3 + y^3 + z^3) = \frac{\partial}{\partial x} (1 - 6xyz)$
 $3x^2 + 0 + 3x^2 \cdot \frac{\partial y}{\partial x} = 0 - 6yz - 6xy \frac{\partial y}{\partial x}$
 $3y^2 \frac{\partial x}{\partial x} + 6xy \frac{\partial x}{\partial x} = -6yz - 3x^2$
 $\frac{\partial y}{\partial x} = \frac{-6yz - 3x^2}{3x^2 + 6xy}$
Ex2. Let $F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 1$. Compute F_x and F_z . What is $-\frac{F_x}{F_z}$?
 $F_x = 3x^2 + 0 + 0 + 6yz - 0$; $F_x = 0 + 0 + 3x^2 + 6xy - 0$
 $\frac{41en}{F_x} - \frac{F_x}{F_x} = \frac{-(3x^2 + 6yx)}{3x^2 + 6xy} = \frac{\partial y}{\partial x}$

Theorem If F(x, y, z) = 0 and z is a function that depends of x and y, then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$

$$\frac{\partial}{\partial x} \left(F(x,y,x)\right) = \frac{\partial}{\partial x} \left(0\right)$$

$$\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial x} = 0$$

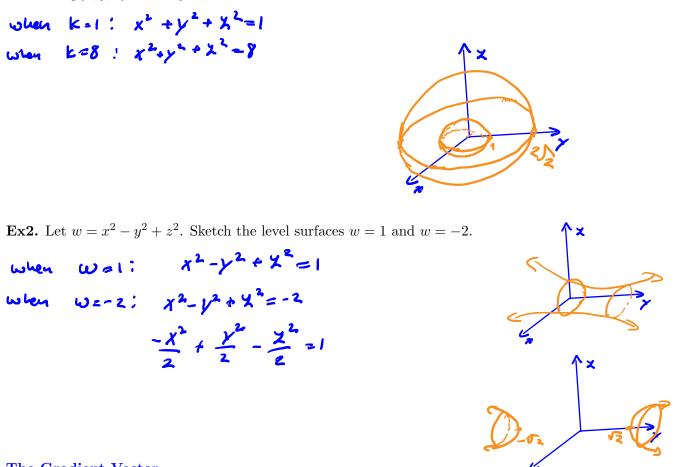
$$F_x(0 + F_y(0) + F_x \cdot \frac{\partial x}{\partial x} = 0 \Rightarrow \qquad \begin{array}{c} \frac{\partial y}{\partial x} = -\frac{F_x}{F_x} \\ \frac{\partial y}{\partial$$

Sec 14.6: Directional Derivatives and the Gradient Vector

Level Surface

Let w = g(x, y, z) a function in 3 variables. A level surface for g(x, y, z) is the set of points in 3-d such that g(x, y, z) = k, for k a constant.

Ex1. Let $g(x, y, z) = x^2 + y^2 + z^2$. Sketch some level surfaces.



The Gradient Vector

If f is a **function of two variables** x and y, then the **gradient of** f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle.$$

If f is a **function of three variables** x, y and z, then the **gradient of** f is the vector function ∇f defined by

 $\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle.$

Tangent Plane to a Level Surface

Let S be a level surface defined by g(x, y, z) = k, where k is a constant and let $P_0 = (x_0, y_0, z_0)$ be a point on S. The tangent plane to S at P_0 is the plane that passes through P_0 and whose normal vector is parallel to $\nabla g(P_0)$.

Ex3. Find the eq. of the tangent plane to the surface $x - z = 4 \tan^{-1}(yz)$ at $(1 + \pi, 1, 1)$.

•) Define
$$g(x,y,\chi) = x - \chi - \psi \tan^{q}(y,\chi)$$

with lacel surface $g(x,y,\chi) = 0$
•) Check that $(1+\pi_{j-1}, i)$ is on the lacel surface. [that is, $g(1+\pi_{j-1}) = 0$
•) A veden perpendicular to the tangent plane is $\nabla g(1+\pi_{j-1})$.
Finding $\nabla g(x_{j,\chi,\chi}) = \langle g_{\chi_{j}}, g_{\chi_{j}}, g_{\chi_{j}} \rangle = \langle i, -4, \frac{c(i)(\chi)}{i + (y_{\chi_{j}})^{2}}, \frac{-i - 4 \cdot (i)(\chi)}{i + (y_{\chi_{j}})^{2}} \rangle$
then $\nabla g(1+\pi_{j-1}) = \langle i, \frac{-4(\psi(i))}{i + (y_{\chi_{j}})}, -i - \frac{(\psi(i)(i))}{i + (y_{\chi_{j}})^{2}} \rangle = \langle i, -2, -3 \rangle$
•) Eq. tangent plane at the point $(1+\pi_{j}, j_{j})$ is
 $\langle x - i - \pi_{j}, y - i, \chi - i \rangle \cdot \langle i, -2, -3 \rangle = 0$
 $l(x - i - \pi_{j}) + (-\chi)(y - i) + (-3)(\chi - i) = 0$

DEF: The normal line to the surface at $P_0(x_0, y_0, z_0)$ is the line through P_0 parallel to $\nabla g(x_0, y_0, z_0)$. **Ex4.** Find the parametric equations of the normal line to the surface $x - z = 4 \tan^{-1}(yz)$ at $(1 + \pi, 1, 1).$

Cet Po=(1+TT, 1, 1). From En3, $\nabla_9(P_0)=(1,-2,-3)$ Parametric equations of the MORMAL line of P. $\begin{cases} x = 1 + T + t(1) \\ y = 1 + t(-2) \\ x = 1 + t(-3) \end{cases}$

webassigni

$$r(t) = \langle 1+T+t, 1-2t, 1-3t \rangle$$
 "in vector form "
(x(t), y(t), x(t)) = (2)

Ex5. Consider the function $g(x,y) = \frac{x^2}{100} + \frac{y^2}{25}$ and a level curve g(x,y) = 1.

Sketch the level curve g(x, y) = 1, verify that the point (8,3) is on the level curve, and sketch the vector $\nabla g(8,3)$.

•) Skelv
$$g(y) = 1 \implies \frac{x^2}{100} + \frac{y}{25} = 1$$

•) Cheel that (ξ_3) is on the level curve:
 $g(\xi_3) = \frac{y^2}{100} + \frac{y^2}{25} = \frac{64}{100} + \frac{q}{25} = \frac{64+36}{100} = 1$
•) $\nabla_3(x,y) = \langle gx, gy \rangle = \langle \frac{x}{20}, \frac{2y}{25} \rangle$
 $\nabla_3(x,y) = \langle gx, gy \rangle = \langle \frac{x}{20}, \frac{2y}{25} \rangle = \frac{2}{25} \langle 23 \rangle$

To-do:

1) Find the parametric equations of the normal line to the ellipsoid

normal line to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$$
Define

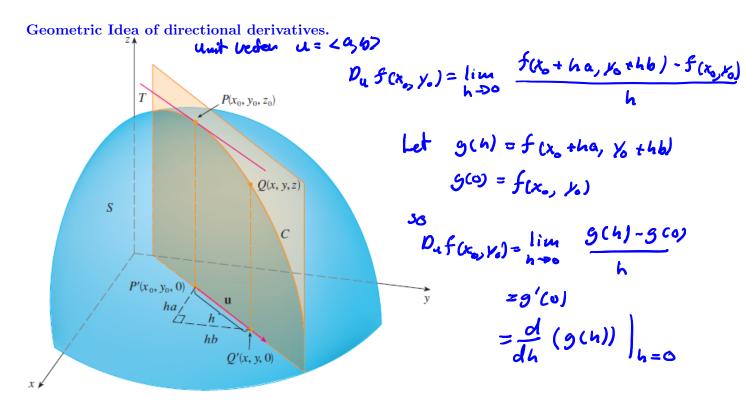
$$g(x, y, z) = \frac{x^2}{4} + y + \frac{z^2}{9}$$
Icuel surface : $g(x, y, z) = 3$

at the point (-2, 1, -3).

2) Find the equation of the tangent plane to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$$

at the point (-2, 1, -3).



DEF: Let z = f(x, y) and let (x_0, y_0) be a point in the domain of f. The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is defined by

$$D_{\mathbf{u}}f(x_0, y_0) = \frac{d}{dh} \left\{ f(x_0 + ha, y_0 + hb) \right\} \Big|_{h=0}$$

if this exists.

Ex1. Let
$$f(x, y) = x^2 y$$

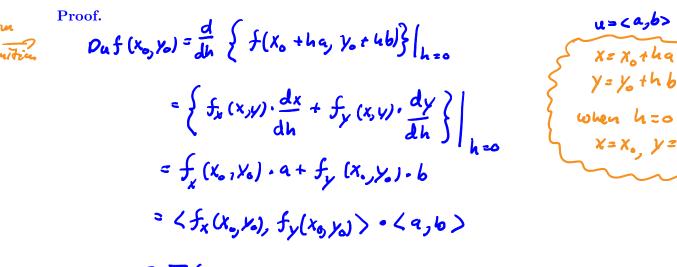
Ex1. Let $f(x, y) = x^2 y$ Find the directional derivative of f at the point (1, 2) in the direction of the vector $\langle 5, 12 \rangle$ using the definition

$$\begin{aligned} & 0_{u}f(l,2) = \frac{d}{dn} \left\{ f\left(l + \frac{5h}{13}, 2 + \frac{i2h}{13}\right) \right\} \Big|_{h=0} & \text{und} \text{ vector: } u = \langle \frac{5}{12}, \frac{12}{13} \rangle = 2(2b) \\ & = \frac{d}{dn} \left\{ \left(l + \frac{5h}{13}\right)^{2} \left(2 + \frac{i2h}{13}\right) \right\} \Big|_{h=0} \\ & = 2\left(l + \frac{5h}{13}\right) \left(\frac{5}{13}\right) \left(2 + \frac{12h}{13}\right) + \left(l + \frac{5h}{13}\right)^{2} \cdot \left(\frac{12}{12}\right) \right\} \Big|_{h=0} \\ & = 2\left(l\right) \left(\frac{5}{13}\right) \left(2l\right) + (l)^{2} \left(\frac{12}{13}\right) = \frac{32}{13}. \end{aligned}$$

Theorem: Let **u** be a unit vector. If (x_0, y_0) is a point in the domain of z = f(x, y), then

$$D_{\mathbf{u}}f(x_0, y_0) = \nabla f(x_0, y_0) \overset{\bullet}{\cdot} \mathbf{u}$$

i.e., $D_{\mathbf{u}}f(x_0, y_0)$ is the dot product of the gradient $\nabla f(x_0, y_0)$ and the unit vector \mathbf{u} .



 $= \nabla f(x_{\bullet}, y_{\bullet}) \cdot u_{\bullet}$

Ex2. Find the directional derivative of the function $f(x, y) = x^2 y^3 - 4y$ at the point (2, -1) in the direction of the vector $3\vec{i} + 4\vec{j}$.

Find
$$Puf(2,-1)$$
 where $u = \langle \frac{3}{5}, \frac{4}{5} \rangle$ unit vector
let's find $\nabla f(x,y) = \langle f_{x}, f_{y} \rangle = \langle 2xy, \frac{3}{5}, \frac{3x^{2}y^{2} - 4} \rangle$
then $\nabla f(2,-1) = \langle -4, 8 \rangle$
so $P_{u}f(2,-1) = \nabla f(2,-1) \cdot u = \langle -4, 8 \rangle \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle = \frac{-12}{5} + \frac{32}{5} = \frac{14}{5}$

Ex3. Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $-4\vec{i} + 8\vec{j}$.

Find
$$D_u f(2, -1)$$
 where $V = \langle \frac{-4}{980}, \frac{8}{180} \rangle$ "unit vector"
From $E_X 2$: $\nabla f(2, -1) = \langle -4, 8 \rangle$
So $D_u f(2, -1) = \nabla f(2, -1) \cdot \langle \frac{-4}{980}, \frac{3}{180} \rangle$
 $= \langle -4, 8 \rangle \cdot \langle \frac{-4}{78}, \frac{8}{98} \rangle = \frac{16 + 64}{160} = \frac{80}{160} \cdot \frac{\sqrt{80}}{180} = \sqrt{80}$

Maximizing the Directional Derivative

Suppose we have a function f of two(or three variables) and we consider all possible directional derivatives of f at a given point. These give the rates of change of f in all possible directions. We can ask the following questions: In which of these directions does f changes fastest and what is the maximum rate of change? The answers are provided by the following theorem.

Theorem. Let P be a point in the domain of the function f. Then:

1. The function f increases most rapidly in the direction of the gradient vector $\nabla f(P)$ and the maximum rate of change is $||\nabla f(P)||$.

2. The function f decreases most rapidly in the direction opposite to the gradient vector, that is, in the direction of $-\nabla f(P)$, and the minimum rate of change is $-||\nabla f(P)||$.

Ex4. Find the maximum rate of change of $f(x, y) = x^2 - xe^{2y}$ at the point (2, 0). **Gran:** $\|\nabla f(p)\| = \| \langle f_x(p), f_y(p) \rangle\|$ where $P_2(2,0)$.

•)
$$\nabla f(x,y) = \langle f_{x}, f_{y} \rangle = \langle 2x - e^{2y}, -2x e^{2y} \rangle$$

 $\Rightarrow \overline{V} f(2,0) = \langle 3, -47 \Rightarrow || \nabla f(2,0) || = \sqrt{9 + 16} = 5$
so, the maximum rate of change of f at (2,0) is 5,

Ex5. Find the direction in which the function $f(x, y) = x^4y - x^2y^3$ decreases fastest at the point (2, -3).

.)
$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle 4x^3y - 2xy^3, x^4 - 3x^2y^2 \rangle$$

 $\Rightarrow \nabla f(2, -3) = \langle 12, -92 \rangle$
so, the direction in which the function decreases featest
 $-\nabla f(2, -3) = -\langle 12, -92 \rangle = \langle -12, 92 \rangle$.

i s

Ex6. The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (1, 2, 2) is 120° . Find the rate of change of T at (1, 2, 2) in the direction toward the point (2, 1, 3).

$$T(x,y,x) = \frac{k}{\sqrt{x^{k}+y^{k}+x^{2}}}$$

$$(T(1,2,2) = 120^{\circ} \Rightarrow \frac{k}{\sqrt{1+y+y}} = 120^{\circ} \Rightarrow k = 360^{\circ}$$

$$(1,32^{1}) \Rightarrow (1,32) \Rightarrow (1,32) \Rightarrow (1,32^{1}) \Rightarrow$$

Important Remark: If z = f(x, y) and $\mathbf{u} = \langle a, b \rangle$ is a unit vector, then

$$D_{\mathbf{u}}f(x_0, y_0) = \langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle \cdot \langle a, b \rangle = af_x(x_0, y_0) + bf_y(x_0, y_0)$$

In particular, $D_{\vec{i}}f(x_0, y_0) = f_x(x_0, y_0)$ and $D_{\vec{j}}f(x_0, y_0) = f_y(x_0, y_0)$.

Exercise: Textbook page 1006 #41